SUPPLEMENTAL MATERIALS

ASCE Natural Hazards Review

Capacity-Building to Support Safer Housing through Appropriate Hurricane Strap Use

Briar Goldwyn, Cole Velasquez, Abbie B. Liel, Amy Javernick-Will, and Matthew Koschmann

DOI: 10.1061/NHREFO.NHENG-1708

© ASCE 2023

www.ascelibrary.org

S1. Lecture slides from capacity-building approach

We interviewed and surveyed over 400 builders, hardware store employees, residents, engineers, and architects across Puerto Rico to understand concerns with housing safety

Wulti-hazard poceptions of housing safety within Puerto Rico's informal construction sector

Field observations

We compared these perceptions of housing safety and structural analysis to identify several areas for technical construction capacity development

Unsafe design and construction practices motivated by capacity limitations, according to builders and hardware store employees

Focus areas:
E.g., the use of hurricane straps to secure key roof connections to provide the provided and concrete housing in hurricanes and earthquakes

Now, we're working on a way to share our research findings as recommendations

We want to interview you before and after a short training module to understanding:

If you've learned anything

If you think these recommendations are important to share

Challenges associated with these recommendations

Suggestions to improve it

6

5

1

2

3

Now, we're working on a way to share our research findings as recommendations

We want to interview you before and after a short training module to understanding:

- If you've learned anything
 If you think these recommendations are important to share
 Challenges associated with these recommendations
 Suggestions to improve it

Agenda: A. Background on our project B. Pre-presentation interviews C. Presentation and discussion:

1. How wood roofs are damaged in a hurricane Recommendations for avoiding catastrophic damage
The types of hurricane straps that should be used at different connections
Installing hurricane straps correctly
What to do if hurricane straps are not available D. Post-presentation interviews

10

7

8

At the truss/rafter-to-top plate connection: Do not bend the H1 strap. That strap is designed to not be bent and to include a nail at the bottom. You CAN bend the MTS12 strap to fit your needs as shown:

H1 strap, Source: Simpson Strong Tie

MTS12 strap, Source: Simpson Strong Tie

	Model No.	Ga.	Fasteners (in.)			DF/SP Allowable Loads			Uplift with	SPF/HF Allowable Loads			Uplift with	
			To Rafters/Truss	To Plates	To Studs	Uplift (160)	Latera	II (160) F2	0.131" x 1½" Nails (160)	Uplift (160)	Latera	I (160)	0.131" x 1½" Nails (160)	Ref.
H	H1	18	85) 0.131 x 116	(4) 0.131 x 216	_	480	510	190	455	425	440	165	370	IBC, FL, L/
Ī	H1.81Z		(6) 0.131 x 11/2		-	540	440	170	460	465	380	130	395	_
	H2A	18	(5) 0.131 x 11/s	(2) 0.131 x 11/6	(5) 0.131 x 11/a	525	130	55	-	495	130	55	-	18C, FL, L/
	H2ASS	18	(5) 0.131 x 11/2	(2) 0.131 x 1 1/2	(5) 0.131 x 11/2	400	130	55	400	345	130	55	345	_
П	H2.5A	18	(5) 0.131 x 21/2	(5) 0.131 x 21/2	-	700	110	110	625	615	110	110	540	18C, FL, U
Ī	H2.5ASS	18	(5) 0.131 x 21/s	(5) 0.131 x 216	-	440	75	70	365	380	75	70	310	_
	H2.5T	18	(5) 0.131 x 21/s	(5) 0.131 x 21/s	-	590	135	145	480	565	135	145	475	ma m 11
	НЗ	18	(4) 0.131 x 21/2	(4) 0.131 x 21/2	-	400	210	170	400	365	180	145	290	IBC, FL, LA

